Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chromatogr A ; 1625: 461237, 2020 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-32709313

RESUMO

The quest for ligands alternative to Protein A for the purification of monoclonal antibodies (mAbs) has been pursued for almost three decades. Yet, the IgG-binding peptides known to date still fall short of the host cell protein (HCP) logarithmic removal value (LRV) set by Protein A media (2.5-3.1). In this study, we present an integrated computational-experimental approach leading to the discovery of peptide ligands that provide HCP LRVs on par with Protein A. First, the screening of 60,000 peptide variants was performed using a high-throughput search algorithm to identify sequences that ensure IgG affinity binding. Select sequences WQRHGI, MWRGWQ, RHLGWF, and GWLHQR were then negatively screened in silico against a panel of model HCPs to ensure the selection of peptides with high binding selectivity. Candidate ligands WQRHGI and MWRGWQ were conjugated to chromatographic resins and characterized by isothermal binding and breakthrough assays to quantify static and dynamic binding capacity (Qmax and DBC10%), respectively. The resulting Qmax were 52.6 mg of IgG per mL of adsorbent for WQRHGI and 57.48 mg/mL for MWRGWQ, while the DBC10% (2 minutes residence time) were 30.1 mg/mL for WQRHGI and 36.4 mg/mL for MWRGWQ. Evaluation of the peptides by isothermal titration calorimetry (ITC) confirmed the binding energy predicted in silico, and an amino acid scanning study corroborated the affinity-like binding activity of the peptides. WQRHGI-WorkBeads resin was finally characterized by purification of a monoclonal antibody from a Chinese Hamster Ovary (CHO) cell culture harvest, affording a remarkable HCP LRV of 2.7, and consistent product yield and purity over 100 chromatographic cycles. These results demonstrate the potential of WQRHGI as an effective alternative to Protein A for antibody purification.


Assuntos
Anticorpos Monoclonais/isolamento & purificação , Cromatografia de Afinidade/métodos , Peptídeos/química , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/metabolismo , Células CHO , Cricetinae , Cricetulus , Imunoglobulina G/isolamento & purificação , Imunoglobulina G/metabolismo , Ligantes , Peptídeos/síntese química , Peptídeos/metabolismo , Ligação Proteica , Proteína Estafilocócica A/química , Proteína Estafilocócica A/metabolismo
2.
Biotechnol Prog ; 36(4): e2994, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32216050

RESUMO

The availability of highly pure animal antibodies is critical in the production of diagnostic tools and biosensors. The peptoid PL16, previously isolated from an ensemble of peptoid variants of the IgG-binding peptide HWRGWV, was utilized in this work as affinity ligand on WorkBeads resin for the purification of immunoglobulin G (IgG) from a variety of mammalian sources and chicken immunoglobulin Y (IgY). The chromatographic protocol initially optimized for murine serum and ascites was subsequently employed for processing rabbit, goat and sheep, donkey, llama, and chicken sera. The PL16-WorkBeads resin proved able to recover all antibody targets with values of yield between 50 and 90%, and purity consistently above 90%. Notably, PL16 not only binds a broader spectrum of animal immunoglobulins than the reference ligands Protein A and G, but it also binds equally well with all their subclasses. Unlike the protein ligands, in fact, PL16 afforded excellent values of yield and purity of mammalian polyclonal IgG, namely murine (47 and 94%), rabbit (66.5 and 91.7%), caprine IgG (63 and 91-95%), donkey, and llama (93 and 97%), as well as chicken IgY (42 and 92%). Of notice, it is also the ability of PL16 to target monomeric IgG without binding aggregated IgG; when challenged with a mixture of monomeric and aggregated murine IgG, PL16 eluted <3% of fed aggregates, against 11-13% eluted by Protein A and G. Collectively, these results prove the potential of the proposed peptoid ligand for large-scale purification of animal immunoglobulins.


Assuntos
Cromatografia de Afinidade , Imunoglobulina G/isolamento & purificação , Imunoglobulinas/isolamento & purificação , Peptoides/química , Animais , Galinhas , Cabras , Imunoglobulina G/química , Imunoglobulina G/imunologia , Imunoglobulinas/química , Ligantes , Camundongos , Ligação Proteica/efeitos dos fármacos , Coelhos , Ovinos
3.
Acta Biomater ; 102: 35-74, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31698048

RESUMO

Peptides have been heavily investigated for their biocompatible and bioactive properties. Though a wide array of functionalities can be introduced by varying the amino acid sequence or by structural constraints, properties such as proteolytic stability, catalytic activity, and phase behavior in solution are difficult or impossible to impart upon naturally occurring α-L-peptides. To this end, sequence-controlled peptidomimetics exhibit new folds, morphologies, and chemical modifications that create new structures and functions. The study of these new classes of polymers, especially α-peptoids, has been highly influenced by the analysis, computational, and design techniques developed for peptides. This review examines techniques to determine primary, secondary, and tertiary structure of peptides, and how they have been adapted to investigate peptoid structure. Computational models developed for peptides have been modified to predict the morphologies of peptoids and have increased in accuracy in recent years. The combination of in vitro and in silico techniques have led to secondary and tertiary structure design principles that mirror those for peptides. We then examine several important developments in peptoid applications inspired by peptides such as pharmaceuticals, catalysis, and protein-binding. A brief survey of alternative backbone structures and research investigating these peptidomimetics shows how the advancement of peptide and peptoid science has influenced the growth of numerous fields of study. As peptide, peptoid, and other peptidomimetic studies continue to advance, we will expect to see higher throughput structural analyses, greater computational accuracy and functionality, and wider application space that can improve human health, solve environmental challenges, and meet industrial needs. STATEMENT OF SIGNIFICANCE: Many historical, chemical, and functional relations draw a thread connecting peptides to their recent cognates, the "peptidomimetics". This review presents a comprehensive survey of this field by highlighting the width and relevance of these familial connections. In the first section, we examine the experimental and computational techniques originally developed for peptides and their morphing into a broader analytical and predictive toolbox. The second section presents an excursus of the structures and properties of prominent peptidomimetics, and how the expansion of the chemical and structural diversity has returned new exciting properties. The third section presents an overview of technological applications and new families of peptidomimetics. As the field grows, new compounds emerge with clear potential in medicine and advanced manufacturing.


Assuntos
Peptidomiméticos/química , Peptoides/química , Sequência de Aminoácidos , Simulação de Dinâmica Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Análise de Sequência de Proteína
4.
Artigo em Inglês | MEDLINE | ID: mdl-31881515

RESUMO

Polyclonal immunoglobulin therapeutics comprising dosed IgG and IgM combinations are powerful tools in fighting cancer and severe infections. The inability of protein ligands to produce polyclonal IgG- and IgM-enriched formulations and recover monoclonal IgM calls for novel ligands with superior biorecognition activity. In this study, a peptoid ligand discovered by our group, and integrated into affinity adsorbents LigaTrap Technologies' "Human IgG" and "Human IgM", were utilized to purify IgG and IgM from complex fluids. IgG purification from human serum using LigaTrap IgG afforded 94.6% purity and 62.9% yield, on par with Protein A/G resins. When challenged with CHO and HEK cell culture harvests with low IgG titer (<1 mg/mL), LigaTrap IgG returned values of yield and purity well above 60% and 90%. LigaTrap IgM was evaluated for purifying IgM in comparison with commercial adsorbents, and afforded a product purity of 93% from a CHO harvest (IgM titer of 1 mg/mL) and 75.1% yield from a HEK harvest (0.5 mg/mL). LigaTrap-M provided IgM enrichment up to 11-fold higher than HiTrap resin. The peptoid adsorbents separated IgG-depleted human serum into IgM- and IgA-enriched fractions. These results demonstrate the potential of the peptoid ligand for manufacturing polyclonal Ig formulations and monoclonal IgM therapeutics.


Assuntos
Cromatografia de Afinidade/métodos , Imunoglobulina G/isolamento & purificação , Imunoglobulina M/isolamento & purificação , Peptoides , Proteínas Recombinantes/isolamento & purificação , Animais , Células CHO , Cricetinae , Cricetulus , Células HEK293 , Humanos , Imunoglobulina G/metabolismo , Imunoglobulina M/metabolismo , Peptoides/química , Peptoides/metabolismo , Proteínas Recombinantes/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-31841976

RESUMO

Probing the affinity of a ligand for homologous protein targets currently relies on laborious assays that need special equipment and high amounts of isolated, highly pure proteins. Herein we present the use of pISep, an integrated buffer system and modeling package, as an analytical method to rapidly and accurately probe the binding strength and mechanisms of homologous proteins to surface-bound ligands. To demonstrate our method, we utilized the four subclasses of human immunoglobulin G (IgG) as model homologous protein targets and the IgG-binding peptide HWRGWV as model ligand. Following IgG adsorption on a HWRGWV-Toyopearl adsorbent, the pISep buffer system was used to run uncoupled dual elution gradients of pH (from pH 8.5 to 2.5) and either isocratic or time dependent salt concentration. Both the sequence and partial overlap of elution times (IgG4 > IgG3 ≥ IgG1 > IgG2) was found to match closely the values of binding strength (KD) determined with both in silico docking simulations and isothermal titration calorimetry experiments. pISep gradients performed at different values of ionic strengths provided a means to compare the contribution of hydrophobic vs. electrostatic interactions to the IgG-peptide affinity. The shifts in retention times indicated that, among the various components of the binding energy, the hydrophobic interaction dominates in the binding of IgG2 and IgG4, whereas the binding of IgG1 and IgG3 features a balance of electrostatic and hydrophobic modes. These findings were also confirmed by the in silico analysis of the complexes formed by HWRGWV and the Fc fragment of the IgG subclasses. Collectively, these results indicate that the retention times on pISep elution gradients - in particular peak max, overlap, and shift under different conditions - directly correlate to the strength and nature of protein-ligand interactions. This work demonstrates the effectiveness of the pISep toolbox for probing the differential binding of homologous proteins to a reference ligand and informing the optimization of platform processes for the purification and fractionation of biotherapeutics.


Assuntos
Cromatografia de Afinidade/métodos , Peptídeos , Ligação Proteica , Proteínas Recombinantes , Adsorção , Calorimetria , Humanos , Concentração de Íons de Hidrogênio , Imunoglobulina G/química , Imunoglobulina G/isolamento & purificação , Imunoglobulina G/metabolismo , Ligantes , Simulação de Dinâmica Molecular , Peptídeos/química , Peptídeos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Cloreto de Sódio/química , Eletricidade Estática
6.
J Chromatogr A ; 1602: 284-299, 2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31230875

RESUMO

A great number of protein-binding peptides are known and utilized as drugs, diagnostic reagents, and affinity ligands. Recently, however, peptide mimetics have been proposed as valuable alternative to peptides by virtue of their excellent biorecognition activity and higher biochemical stability. This poses the need to develop a strategy for translating known protein-binding peptides into peptoid analogues with comparable or better affinity. This work proposes a route for translation utilizing the IgG-binding peptide HWRGWV as reference sequence. An ensemble of peptoid analogues of HWRGWV were produced by adjusting the number and sequence arrangement of residues containing functional groups that resemble both natural and non-natural amino acids. The variants were initially screened via IgG binding tests in non-competitive mode to select candidate ligands. A set of selected peptoids were studied in silico by docking onto putative binding sites identified on the crystal structures of human IgG1, IgG2, IgG3, and IgG4 subclasses, returning values of predicted binding energy that aligned well with the binding data. Selected peptoids PL-16 and PL-22 were further characterized by binding isotherm analysis to determine maximum capacity (Qmax ˜ 48-57 mg of IgG per mL of adsorbent) and binding strength on solid phase (KD ˜ 5.4-7.8 10-7 M). Adsorbents PL-16-Workbeads and PL-22-Workbeads were used for purifying human IgG from a cell culture supernatant added with bovine serum, affording high values of IgG recovery (up to 85%) and purity (up to 98%) under optimized binding and elution conditions. Both peptoid ligands also proved to be stable against proteolytic enzymes and strong alkaline agents. Collectively, these studies form a method guiding the design of peptoid variants of cognate peptide ligands, and help addressing the challenges that, despite the structural similarity, the peptide-to-peptoid translation presents.


Assuntos
Anticorpos/metabolismo , Afinidade de Anticorpos , Peptídeos/química , Peptoides/química , Adsorção , Álcalis/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Células CHO , Bovinos , Cricetinae , Cricetulus , Humanos , Imunoglobulina G/isolamento & purificação , Imunoglobulina G/metabolismo , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica , Proteólise , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...